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Evaluation of two-sided complex integrals of the form
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is often required when analyzing linear systems to determine signal variances resulting
from stochastic inputs and system noise bandwidths. Presented are algebraic solutions of
both the above integrals in a closed matrix equation form using coefficients of the
numerator and denominator polynomials of the function G.

l. Introduction

In the analysis of linear systems for output and internal
signal variance caused by noisy input signals, and for the
analysis of noise bandwidths of such systems, the following
integrals often require evaluation.
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These integrals are two-sided integrals in the complex plane.
Integral (2) arises in the analysis of continuous systems where
§ is the Laplace transform complex frequency. G(S) is the
ratio of two polynomials in S, with the denominator polyno-
mial of degree n being at least 1 degree higher than the
numerator polynomial. The zeros of the denominator polyno-
mial are known as the poles of G(S) and are assumed to be
located in the left side of the complex S-plane.

Integral (1) arises in the analysis of sampled data systems
where Z is equal to e57, T is the sampling time, and e is the
base of the natural logarithm. G(Z) is the ratio of two polyno-
mials in Z, with the denominator polynomial of degree » being
equal to, or greater than, the degree of the numerator polyno-
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mial. The poles of G(Z) are assumed to lie within the unit
circle of the Z complex plane.

Integrals in the complex plane of polynomial ratios are
normally evaluated by factoring the denominator polynomial
to determine the poles, and then summing the residues of the
poles within the contour of integration. For the integrals (1)
and (2), the residue method is highly laborious and essentially
numeric in nature. However, advantage may be taken of the
symmetry and assumptions in (1) and (2) to obtain an alge-
braic evaluation in matrix form using the coefficients of the
polynomials of G.

ll. Sampled Data Systems
The function G of Eq. (1) is given as
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The solution system of equations as derived in Ref. 1 is
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Table 1 lists the matrix equations obtained from Eq. (4) for
values of n from 1 to 4. The algebraic value of /, may then be
obtained using Cramer’s rule (Ref. 2).

lll. Continuous Systems
The function G of Eq. (2) is given as
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The solution system of equations is derived in Appendix A .
using a method similar to the derivation of Eq. (4) in Ref. 1.
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Table 2 lists the matrix equations obtained from Eq. (6) for
values of n from 1 to 5. Similarly to the case of sampled data
systems, /, may be obtained through the use of Cramer’s rule.

IV Conclusion

Algebraic closed matrix forms have been presented for the
evaluation of integrals (1) and (2). The closed forms provide
the possibility of obtaining some insight into parameter sensi-
tivity in addition to greatly reducing the computational com-
plexity required by the normal method of evaluation by
residues.
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Table 1. Matrix equation solutions to sampled-data systems integral
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Table 2. Matrix equation solutions to continuous systems integral
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Appendix A

Derivation of Eq. (6)
The integral to be evaluated is
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Using a partial fraction expansion, assuming nonrepeated roots of 4(s)
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where R, is the residue of pole, -p,, in the left-hand complex S-plane, and T} is the residue of the symmetric pole, py, in the
right-hand complex S-plane. From residue theory

n
= )R, (A4)
k=1
The relationship of T, to R, is found as follows.
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where A'(S) = d/dS A(S). Note that d/dS A (-S) =-A(-S). Therefore
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Eq. (6) is obtained by expanding both sides of Eq. (A-7) in polynomials of S and equating coefficients

of Eq. (A-7), define ¢; ; such that
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Substituting Eqs. (A-13) and (A-14) into Eq. (A-7),
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From Eqs. (A4) and (A-11)
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Using Eq. (A-2), the left side of Eq. (A-7) becomes
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where b, =0,m <1,m>n.
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It is convenient to express the inner summation in Eq. (A-17) as
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Therefore Eq. (A-17) becomes
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Equating the coefficients of $% in Eqs. (A-15) and (A-19) gives
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which is Eq. (6). It is conjectured that the results are also valid for repeated roots.
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